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Abstract. We calculate the branching ratios and CP -asymmetries for B0 → π+ρ−, B0 → ρ+π−, B+ →
ρ+π0, B+ → π+ρ0, B0 → π0ρ0, B+ → π+ω and B0 → π0ω decays, in the perturbative QCD approach. In
this approach, we calculate non-factorizable and annihilation type contributions, in addition to the usual
factorizable contributions. Our result is in agreement with the branching ratio of B0/B̄0 → π±ρ∓, B± →
π±ρ0, π±ω measured by the CLEO and BABAR collaborations. We also predict large CP -asymmetries in
these decays. These channels are useful to determine the CKM angle φ2.

1 Introduction

The rare decays of the B-mesons are getting more and
more interesting, since they are useful for the search of
CP -violation and sensitive to new physics. The recent
measurement of B → πρ and πω decays by the CLEO
Collaboration [1] aroused more discussions on these decays
[2]. The B → πρ, πω decays which are helpful for the de-
termination of the Cabbibo–Kobayashi–Maskawa (CKM)
unitarity triangle φ2 have been studied in the factoriza-
tion approach in detail [3,4]. In this paper, we would like
to study the B → πρ and πω decays in the perturba-
tive QCD approach (PQCD), where we can calculate the
non-factorizable contributions as corrections to the usual
factorization approach.

In the B → πρ, πω decays, the B-meson is heavy, sit-
ting at rest. It decays into two light mesons with large mo-
menta. Therefore the light mesons are moving very fast in
the rest frame of the B-meson. In this case, the short dis-
tance hard process dominates the decay amplitude. The
reasons can be ordered as: first, because there are not
many resonances near the energy region of the B mass,
it is reasonable to assume that the final state interaction
is not important in two-body B decays. Second, with the
final light mesons moving very fast, there must be a hard
gluon to kick the light spectator quark (almost at rest) in
the B-meson to form a fast moving pion or light vector
meson. So the dominant diagram in this theoretical pic-
ture is the one with a hard gluon from the spectator quark
connecting with the other quarks in the four quark oper-
ator of the weak interaction. There are also soft (soft and
collinear) gluon exchanges between the quarks. Summing
over those leading soft contributions gives a Sudakov form
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factor which suppresses the dominance of the soft con-
tribution. This makes the PQCD reliable in calculating
the non-leptonic decays. With the Sudakov resummation,
we can include the leading double logarithms for all loop
diagrams, in association with the soft contribution. Un-
like the usual factorization approach, the hard part of the
PQCD approach consists of six quarks rather than four.
We thus call it the case of six-quark operators or six-quark
effective theory. Applying the six-quark effective theory to
B-meson decays, we need meson wave functions for the
hadronization of quarks into mesons. All the collinear dy-
namics is included in the meson wave functions.

In this paper, we calculate the B → π and B → ρ form
factors, which are input parameters used in the factoriza-
tion approach. The form factor calculations can give severe
restrictions to the input meson wave functions. We also
calculate the non-factorizable contributions and the anni-
hilation type diagrams, which are difficult to calculate in
the factorization approach. We found that this type of di-
agrams gives dominant contributions to the strong phases.
The strong phase in this approach can also be calculated
directly, without ambiguity. In the next section, we will
briefly introduce our method of PQCD. In Sect. 3, we per-
form the perturbative calculations for all the channels. We
give the numerical results and discussions in Sect. 4. Fi-
nally Sect. 5 is a short summary.

2 The framework

The three scale PQCD factorization theorem has been de-
veloped for non-leptonic heavy meson decays [5]. The fac-
torization formula is given by the typical expression

C(t)×H(x, t)× Φ(x)
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× exp

[
−s(P, b)− 2

∫ t

1/b

dµ̄
µ̄
γq(αs(µ̄))

]
, (1)

where C(t) are the corresponding Wilson coefficients, Φ(x)
are the meson wave functions. The quark anomalous di-
mension γq = −αs/π describes the evolution from scale t
to 1/b.

Non-leptonic heavy meson decays involve three scales:
theW -boson mass mW , at which the matching conditions
of the effective Hamiltonian is defined, the typical scale
t of a hard sub-amplitude, which reflects the dynamics
of heavy quark decays, and the factorization scale 1/b,
with b the conjugate variable of the parton transverse mo-
menta. The dynamics below the 1/b scale is regarded as
being completely non-perturbative, and can be parame-
terized into meson wave functions. Above the scale 1/b,
PQCD is reliable and radiative corrections produce two
types of large logarithms: ln(mW /t) and ln(tb). The for-
mer are summed by the renormalization group equations
to give the leading logarithm evolution from mW to the t
scale contained in the Wilson coefficients C(t), while the
latter are summed to give the evolution from the t scale
down to 1/b, shown as the last factor in (1).

There exist also double logarithms ln2(Pb) from the
overlap of collinear and soft divergences, P being the dom-
inant light-cone component of a meson momentum. The
resummation of these double logarithms leads to a Su-
dakov form factor exp[−s(P, b)], which suppresses the long
distance contributions in the large b region, and vanishes
as b > 1/ΛQCD. This factor improves the applicability of
PQCD. For the detailed derivation of the Sudakov form
factors, see [6,7]. Since all logarithm corrections have been
summed by renormalization group equations, the above
factorization formula does not depend on the renormal-
ization scale µ.

With all the large logarithms resummed, the remaining
finite contributions are absorbed into a hard sub-ampli-
tude H(x, t). The H(x, t) is calculated perturbatively us-
ing the four quark operators together with the spectator
quark, connected by a hard gluon. When the end-point
region (x → 0, 1) of the wave function is important for
the hard amplitude, the corresponding large double loga-
rithms αs ln2 x shall appear in the hard amplitude H(x, t),
which should be resummed to give a jet function St(x).
This technique is the so-called threshold resummation [8].
The threshold resummation form factor St(x) vanishes as
x → 0, 1, which effectively suppresses the end-point be-
havior of the hard amplitude. This suppression will be-
come important when the meson wave function remains
constant at the end-point region. For example, the twist-3
wave functions φPπ and φtπ are such kinds of wave func-
tions; they can be found in the numerical section of this
paper. The typical scale t in the hard sub-amplitude is
around (ΛMB)1/2. It is chosen as the maximum value of
those scales which appear in the six-quark action. This is
to diminish the α2

s corrections to the six-quark amplitude.
The expressions of the scale t in different sub-amplitudes
will be derived in the next section and the formula is
shown in the appendix.

2.1 Wilson coefficients

First we begin with the weak effective Hamiltonian Heff
for the ∆B = 1 transitions:

Heff =
GF√
2

[
VubV

∗
ud (C1O

u
1 + C2O

u
2 )− VtbV

∗
td

10∑
i=3

CiOi

]
.

(2)
We specify below the operators in Heff for b → d:

Ou
1 = d̄αγ

µLuβ · ūβγµLbα,
Ou

2 = d̄αγ
µLuα · ūβγµLbβ ,

O3 = d̄αγ
µLbα ·

∑
q′

q̄′
βγµLq

′
β ,

O4 = d̄αγ
µLbβ ·

∑
q′

q̄′
βγµLq

′
α,

O5 = d̄αγ
µLbα ·

∑
q′

q̄′
βγµRq

′
β ,

O6 = d̄αγ
µLbβ ·

∑
q′

q̄′
βγµRq

′
α,

O7 =
3
2
d̄αγ

µLbα ·
∑
q′

eq′ q̄′
βγµRq

′
β ,

O8 =
3
2
d̄αγ

µLbβ ·
∑
q′

eq′ q̄′
βγµRq

′
α,

O9 =
3
2
d̄αγ

µLbα ·
∑
q′

eq′ q̄′
βγµLq

′
β ,

O10 =
3
2
d̄αγ

µLbβ ·
∑
q′

eq′ q̄′
βγµLq

′
α. (3)

Here α and β are the SU(3) color indices; L and R are
the left- and right-handed projection operators with L =
(1 − γ5), R = (1 + γ5). The sum over q′ runs over the
quark fields that are active at the scale µ = O(mb), i.e.,
(q′ε{u, d, s, c, b}).

The PQCD approach works well for the leading twist
approximation and leading double logarithm summation.
For the Wilson coefficients, we will also use the leading
logarithm summation for the QCD corrections, although
the next-to-leading order calculations already exists in the
literature [9]. This is the consistent way to cancel the ex-
plicit µ dependence in the theoretical formulae.

If the scale mb < t < mW , then we evaluate the Wil-
son coefficients at a t scale using the leading logarithm
running equations [9] in AppendixB of [10]. In numerical

calculations, we use αs = 4π/[β1 ln(t2/Λ
(5)
QCD

2
)] which is

the leading order expression with Λ
(5)
QCD = 193MeV, de-

rived for Λ(4)
QCD = 250MeV. Here β1 = (33−2nf )/12, with

the appropriate number of active quarks nf . nf = 5 when
the scale t is larger than mb.

If the scale t < mb, then we evaluate the Wilson co-
efficients at the t scale using the formulae in AppendixC
of [10] for four active quarks (nf = 4) (again in leading
logarithm approximation).
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2.2 Wave functions

In the resummation procedure, the B-meson is treated as
a heavy-light system. In general, the B-meson light-cone
matrix element can be decomposed as [11,12]∫ 1

0

d4z

(2π)4
eik1·z〈0|b̄α(0)dβ(z)|B(pB)〉

= − i√
2Nc

{
(�pB +mB)γ5

×
[
φB(k1)− �n− �v√

2
φ̄B(k1)

]}
βα

, (4)

where n = (1, 0,0T), and v = (0, 1,0T) are the unit vec-
tors pointing to the plus and minus directions, respec-
tively. From the above equation, one can see that there
are two Lorentz structures in the B-meson distribution
amplitudes. They obey the following normalization condi-
tions:∫

d4k1

(2π)4
φB(k1) =

fB

2
√
2Nc

,

∫
d4k1

(2π)4
φ̄B(k1) = 0. (5)

In general, one should consider both these two Lorentz
structures in calculations of B-meson decays. However, it
can be argued that the contribution of φ̄B is numerically
small [13]; thus its contribution can be neglected. There-
fore, we only consider the contribution of the Lorentz
structure

ΦB =
1√
2Nc

(�pB +mB)γ5φB(k1) (6)

in our calculation. We keep the same input as in the other
calculations in this direction [10,13,14] and it is also easier
for comparing with other approaches [12,15]. Throughout
this paper, we use the light-cone coordinates to write the
four momentum as (k+

1 , k
−
1 , k

⊥
1 ). In the next section, we

will see that the hard part is always independent of one of
the k+

1 and/or k−
1 , if we make some approximations. The

B-meson wave function is then a function of the variables
k−
1 (or k+

1 ) and k⊥
1 ,

φB(k−
1 , k

⊥
1 ) =

∫
dk+

1 φ(k
+
1 , k

−
1 , k

⊥
1 ). (7)

The π-meson is treated as a light-light system. In the
B-meson rest frame, the pion is moving very fast, and one
of the k+

1 or k−
1 is zero which depends on the definition

of the z axis. We consider a pion moving in the minus
direction in this paper. The pion distribution amplitude
is defined by [16]

〈π−(P )|d̄α(z)uβ(0)|0〉

=
i√
2Nc

∫ 1

0
dxeixP ·z

[
γ5 �Pφπ(x) +m0γ5φP (x)

−m0σ
µνγ5Pµzν

φσ(x)
6

]
βα

. (8)

For the first and second term in the above equation, we
can easily get the projector of the distribution amplitude
in the momentum space. However, for the third term we
should make some effort to transfer it into the momentum
space. By using integration by parts for the third term,
after a few steps, (8) can be finally changed to

〈π−(P )|d̄α(z)uβ(0)|0〉

=
i√
2Nc

∫ 1

0
dxeixP ·z

[
γ5 �Pφπ(x) +m0γ5φP (x)

+m0[γ5(�v �n− 1)]φtπ(x)
]
βα
, (9)

where φtπ(x) = (1/6)(d/x)φσ(x), and the vector v is par-
allel to the π-meson momentum pπ. m0 = m2

π/(mu+md)
is a scale characterized by chiral perturbation theory. In
B → πρ decays, the ρ-meson is only longitudinally polar-
ized. We only consider its wave function in longitudinal
polarization [13,17]:

〈ρ−(P, εL)|d̄α(z)uβ(0)|0〉

=
1√
2Nc

∫ 1

0
dxeixP ·z

{
�ε [�pρφtρ(x) +mρφρ(x)

]
+mρφ

s
ρ(x)

}
. (10)

The second term in the above equation is the leading twist
wave function (twist-2), while the first and third terms are
sub-leading twist (twist-3) wave function.

The transverse momentum k⊥ is usually conveniently
converted to the b parameter by a Fourier transforma-
tion. The initial conditions of φi(x), i = B, π, are of non-
perturbative origin, satisfying the normalization∫ 1

0
φi(x, b = 0)dx =

1
2
√
6
fi, (11)

with fi the meson decay constant.

3 Perturbative calculations

In the previous section we have discussed the wave func-
tions and Wilson coefficients of the factorization formula
in (1). In this section, we will calculate the hard partH(t).
This part involves the four quark operators and the nec-
essary hard gluon connecting the four quark operator and
the spectator quark. Since the final results are expressed
as integrations of the distribution function variables, we
will show the whole amplitude for each diagram including
wave functions.

Similar to the B → ππ decays [10], there are 8 types
of diagrams contributing to the B → πρ decays, which are
shown in Fig. 1. Let us first calculate the usual factorizable
diagrams a and b. The operators O1, O2, O3, O4, O9, and
O10 are (V − A)(V − A) currents, and the sum of their
amplitudes is given by

Fe = 8
√
2πCFGFfρmρm

2
B(ε · pπ)
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Fig. 1a–h. Diagrams contributing to the B → πρ decays (diagram a and b contribute to the B → π form factor)

×
∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2φB(x1, b1)

×
{[

(1 + x2)φAπ (x2, b2)

+ rπ(1− 2x2)
(
φPπ (x2, b2) + φσπ(x2, b2)

) ]
αs(t1e)

× he(x1, x2, b1, b2) exp[−Sab(t1e)]
+ 2rπφPπ (x2, b2)αs(t2e)he(x2, x1, b2, b1)

× exp[−Sab(t2e)]
}
, (12)

where rπ = m0/mB = m2
π/[mB(mu + md)]; CF = 4/3

is a color factor. The function he, the scales tie and the
Sudakov factors Sab are displayed in the appendix. In the
above equation, we do not include the Wilson coefficients
of the corresponding operators, which are process depen-
dent. They will be shown later in this section for different
decay channels. The diagrams in Fig. 1a,b are also the di-
agrams for the B → π form factor FB→π

1 . Therefore we
can extract FB→π

1 from (12). We have

FB→π
1 (q2 = 0) =

Fe√
2GFfρmρ(ε · pπ)

. (13)

The operators O5, O6, O7, and O8 have the structure of
(V − A)(V + A). In some decay channels, some of these
operators contribute to the decay amplitude in a factoriz-
able way. Since only the vector part of the (V +A) current
contributes to the vector meson production,

〈π|V −A|B〉〈ρ|V +A|0〉 = 〈π|V −A|B〉〈ρ|V −A|0〉, (14)
the result of these operators is the same as (12). In some
other cases, we need to do a Fierz transformation for these
operators to get the right color structure for the factoriza-
tion to work. In this case, we get (S−P )(S+P ) operators

from (V −A)(V +A) ones. Because neither the scalar nor
the pseudo-scalar density give contributions to the vector
meson production, i.e. 〈ρ|S + P |0〉 = 0, we get

FP
e = 0. (15)

For the non-factorizable diagrams c and d, all three
meson wave functions are involved. The integration of b3
can be performed easily using the δ function δ(b3 − b1),
leaving only the integration of b1 and b2. For the (V −
A)(V −A) operators the result is

Me = −32
3

√
3πCFGFmρm

2
B(ε · pπ)

×
∫ 1

0
dx1dx2dx3

∫ ∞

0
b1db1b2db2φB(x1, b1)

× x2
[
φAπ (x2, b1)− 2rπφσπ(x2, b1)

]
× φρ(x3, b2)hd(x1, x2, x3, b1, b2) exp[−Scd(td)]. (16)

For the (V −A)(V +A) operators the formula is different:

MP
e =

64
3

√
3πCFGFm

2
ρmB(ε · pπ)

×
∫ 1

0
dx1dx2dx3

∫ ∞

0
b1db1b2db2φB(x1, b1)

×
{
rπ(x3 − x2)

× [
φPπ (x2, b1)φtρ(x3, b2) + φσπ(x2, b1)φsρ(x3, b2)

]
− rπ(x2 + x3)

× [
φPπ (x2, b1)φsρ(x3, b2) + φσπ(x2, b1)φtρ(x3, b2)

]
+ x3φ

A
π (x2, b1)

[
φtρ(x3, b2)− φsρ(x3, b2)

] }
× hd(x1, x2, x3, b1, b2) exp[−Scd(td)]. (17)

Comparing with the expression of Me in (16), the (V −
A)(V +A) type result MP

e is suppressed by mρ/mB .
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For the non-factorizable annihilation diagrams e and
f, again all three wave functions are involved. The inte-
gration of b3 can be performed easily using the δ function
δ(b3 − b2). Here we have two kinds of contribution, which
are different. Ma is the contribution containing the oper-
ator of type (V −A)(V −A), and MP

a is the contribution
containing the operator of type (V −A)(V +A):

Ma =
32
3

√
3πCFGFmρm

2
B(ε · pπ)

×
∫ 1

0
dx1dx2dx3

∫ ∞

0
b1db1b2db2φB(x1, b1)

×
{[

x2φ
A
π (x2, b2)φρ(x3, b2) + rπrρ(x2 − x3)

× (
φPπ (x2, b2)φtρ(x3, b2) + φσπ(x2, b2)φsρ(x3, b2)

)
+ rπrρ(x2 + x3)

× (
φσπ(x2, b2)φtρ(x3, b2) + φPπ (x2, b2)φsρ(x3, b2)

) ]
× h1

f (x1, x2, x3, b1, b2) exp[−Sef (t1f )]
−

[
x3φ

A
π (x2, b2)φρ(x3, b2) + rπrρ(x3 − x2)

× (
φPπ (x2, b2)φtρ(x3, b2) + φσπ(x2, b2)φsρ(x3, b2)

)
+ rπrρ(2 + x2 + x3)φPπ (x2, b2)φsρ(x3, b2)

− rπrρ(2− x2 − x3)φσπ(x2, b2)φtρ(x3, b2)
]

× h2
f (x1, x2, x3, b1, b2) exp[−Sef (t2f )]

}
, (18)

MP
a = −32

3

√
3πCFGFmρm

2
B(ε · pπ)

×
∫ 1

0
dx1dx2dx3

∫ ∞

0
b1db1b2db2φB(x1, b1)

×
{[

x2rπφρ(x3, b2)
(
φPπ (x2, b2) + φσπ(x2, b2)

)
− x3rρφ

A
π (x2, b2)

(
φtρ(x3, b2) + φsρ(x3, b2)

) ]
× h1

f (x1, x2, x3, b1, b2) exp[−Sef (t1f )]
+

[
(2− x2)rπφρ(x3, b2)

(
φPπ (x2, b2) + φσπ(x2, b2)

)
− rρ(2− x3)φAπ (x2, b2)

(
φtρ(x3, b2) + φsρ(x3, b2)

) ]

× h2
f (x1, x2, x3, b1, b2) exp[−Sef (t2f )]

}
, (19)

where rρ = mρ/mB . The factorizable annihilation dia-
grams g and h involve only the π and ρ wave functions.
There are also two kinds of decay amplitudes for these two
diagrams. Fa is for (V − A)(V − A) type operators, and
FP
a is for (S − P )(S + P ) type operators:

Fa = 8
√
2CFGFπfBmρm

2
B(ε · pπ)

×
∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

×
{[

x2φ
A
π (x1, b1)φρ(x2, b2)

− 2(1− x2)rπrρφPπ (x1, b1)φtρ(x2, b2)

+ 2(1 + x2)rπrρφPπ (x1, b1)φsρ(x2, b2)
]

× αs(t1e)ha(x2, x1, b2, b1) exp[−Sgh(t1e)]
−

[
x1φ

A
π (x1, b1)φρ(x2, b2)

+ 2(1 + x1)rπrρφPπ (x1, b1)φsρ(x2, b2)

− 2(1− x1)rπrρφσπ(x1, b1)φsρ(x2, b2)
]

× αs(t2e)ha(x1, x2, b1, b2) exp[−Sgh(t2e)]
}
, (20)

FP
a = 16

√
2CFGFπfBmρm

2
B(ε · pπ)

×
∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

×
{[

2rπφPπ (x1, b1)φρ(x2, b2) + x2rρφ
A
π (x1, b1)

× (
φsρ(x2, b2)− φtρ(x2, b2)

) ]
× αs(t1e)ha(x2, x1, b2, b1) exp[−Sgh(t1e)]
+

[
x1rπ

(
φPπ (x1, b1)− φσπ(x1, b1)

)
φρ(x2, b2)

+ 2rρφAπ (x1, b1)φsρ(x2, b2)
]

× αs(t2e)ha(x1, x2, b1, b2) exp[−Sgh(t2e)]
}
, (21)

In the above equations, we have used the assumption
that x1 
 x2, x3. Since the light quark momentum frac-
tion x1 in the B-meson is peaked at the small x1 re-
gion, while the quark momentum fraction x2 of the pion
is peaked around 0.5, this is not a bad approximation.
The numerical results also show that this approximation
makes very little difference in the final result. After us-
ing this approximation, all the diagrams are functions of
k−
1 = x1mB/(21/2) of the B-meson only, independent of
the variable k+

1 . Therefore the integration of (7) is per-
formed safely.

If we exchange the π and ρ in Fig. 1, the result will be
different for some diagrams because this will switch the
dominant contribution from the B → π form factor to the
B → ρ form factor. The new diagrams are shown in Fig. 2.
Inserting (V − A)(V − A) operators, the corresponding
amplitude for Fig. 2a,b is

Feρ = 8
√
2πCFGFfπmρm

2
B(ε · pπ) (22)

×
∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2φB(x1, b1)

×
{[

(1 + x2)φρ(x2, b2)

+ (1− 2x2)rρ
(
φtρ(x2, b2) + φsρ(x2, b2)

) ]
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Fig. 2a–h. Diagrams contributing to the B → πρ decays (diagram a and b contribute to the B → ρ form factor AB→ρ
0 )

× αs(t1e)he(x1, x2, b1, b2) exp[−Sab(t1e)]

+ 2rρφsρ(x2, b2)αs(t2e)he(x2, x1, b2, b1) exp[−Sab(t2e)]
}
.

These two diagrams are also responsible for the calculation
of the B → ρ form factors. The form factor relative to the
B → πρ decays is AB→ρ

0 , which can be extracted from
(22):

AB→ρ
0 (q2 = 0) =

Feρ√
2GFfπmρ(ε · pπ)

. (23)

For (V −A)(V +A) operators, Fig. 2a,b give

FP
eρ = −16

√
2πCFGFfπmρrπm

2
B(ε · pπ)

×
∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2φB(x1, b1)

×
{[

φρ(x2, b2)− rρx2φ
t
ρ(x2, b2)

+ (2 + x2)rρφsρ(x2, b2)
]

× αs(t1e)he(x1, x2, b1, b2) exp[−Sab(t1e)]
+

[
x1φρ(x2, b2) + 2rρφsρ(x2, b2)

]
× αs(t2e)he(x2, x1, b2, b1) exp[−Sab(t2e)]

}
. (24)

For the non-factorizable diagrams in Fig. 2c,d the result is

Meρ = −32
3

√
3πCFGFmρm

2
B(ε · pπ)

×
∫ 1

0
dx1dx2dx3

∫ ∞

0
b1db1b2db2φB(x1, b1)

× x2
[
φρ(x2, b2)− 2rρφtρ(x2, b2)

]
× φAπ (x3, b1)hd(x1, x2, x3, b1, b2)
× exp[−Scd(td)]. (25)

For the non-factorizable annihilation diagrams e and f,
we have Maρ for (V − A)(V − A) operators and MP

aρ for
(V −A)(V +A) operators.

Maρ =
32
3

√
3πCFGFmρm

2
B(ε · pπ)

×
∫ 1

0
dx1dx2dx3

∫ ∞

0
b1db1b2db2φB(x1, b1)

×
{
exp[−Sef (t1f )]

×
[
x2φ

A
π (x3, b2)φρ(x2, b2) + rπrρ(x2 − x3)

× (
φPπ (x3, b2)φtρ(x2, b2) + φσπ(x3, b2)φsρ(x2, b2)

)
+ rπrρ(x2 + x3)

(
φσπ(x3, b2)φtρ(x2, b2)

+ φPπ (x3, b2)φsρ(x2, b2)
)]
h1
f (x1, x2, x3, b1, b2)

−
[
x3φ

A
π (x3, b2)φρ(x2, b2) + rπrρ(x3 − x2)

× (
φPπ (x3, b2)φtρ(x2, b2) + φσπ(x3, b2)φsρ(x2, b2)

)
− rπrρ(2− x2 − x3)φσπ(x3, b2)φtρ(x2, b2)

+ rπrρ(2 + x2 + x3)φPπ (x3, b2)φsρ(x2, b2)
]

× h2
f (x1, x2, x3, b1, b2) exp[−Sef (t2f )]

}
, (26)

MP
aρ = MP

a . (27)

For the factorizable annihilation diagrams g and h

Faρ = −Fa, (28)

FP
aρ = −FP

a , (29)

If the ρ-meson is replaced by the ω-meson in Figs. 1 and
2, the formulas will be the same, except for replacing fρ
by fω and φρ by φω.
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In the language of the above matrix elements for dif-
ferent diagrams (12)–(29), the decay amplitude for B0 →
π+ρ− can be written

M(B0 → π+ρ−) = Feρ

[
ξu

(
1
3
C1 + C2

)

− ξt

(
C4 +

1
3
C3 + C10 +

1
3
C9

)]

−FP
eρξt

[
C6 +

1
3
C5 + C8 +

1
3
C7

]
+Meρ [ξuC1 − ξt(C3 + C9)]

+Ma

[
ξuC2 − ξt

(
C4 − C6 +

1
2
C8 + C10

)]

−Maρξt

[
C3 + C4 − C6 − C8 − 1

2
C9 − 1

2
C10

]

−MP
aρξt

[
C5 − 1

2
C7

]
+ Fa

[
ξu

(
C1 +

1
3
C2

)

−ξt
(

−1
3
C3 − C4 − 3

2
C7 − 1

2
C8 +

5
3
C9 + C10

)]

+FP
a ξt

[
1
3
C5 + C6 − 1

6
C7 − 1

2
C8

]
, (30)

where ξu = V ∗
ubVud, ξt = V ∗

tbVtd. The C
′
is should be cal-

culated at the appropriate scale t using the equations
in the appendices of [10]. The decay amplitude of the
charge conjugate decay channel B

0 → ρ+π− is the same
as (30) except replacing the CKM matrix elements ξu to
ξ∗
u and ξt to ξ∗

t under the definition of charge conjugation
C|B0〉 = −|B̄0〉. We have

M(B0 → ρ+π−) = Fe

[
ξu

(
1
3
C1 + C2

)

− ξt

(
C4 +

1
3
C3 + C10 +

1
3
C9

)]
+Me [ξuC1 − ξt(C3 + C9)]−MP

e ξt[C5 + C7]

+Maρ

[
ξuC2 − ξt

(
C4 − C6 +

1
2
C8 + C10

)]

−Maξt

[
C3 + C4 − C6 − C8 − 1

2
C9 − 1

2
C10

]

−MP
a ξt

[
C5 − 1

2
C7

]
+ Fa

[
ξu

(
−C1 − 1

3
C2

)

−ξt
(
1
3
C3 + C4 +

3
2
C7 +

1
2
C8 − 5

3
C9 − C10

)]

−FP
a ξt

[
1
3
C5 + C6 − 1

6
C7 − 1

2
C8

]
. (31)

The decay amplitude for B0 → π0ρ0 can be written as

−2M(B0 → π0ρ0) = Fe

[
ξu

(
C1 +

1
3
C2

)

−ξt
(

−1
3
C3 − C4 +

3
2
C7 +

1
2
C8 +

5
3
C9 + C10

)]

+Feρ

[
ξu

(
C1 +

1
3
C2

)

−ξt
(

−1
3
C3 − C4 − 3

2
C7 − 1

2
C8 +

5
3
C9 + C10

)]

+FP
eρξt

[
1
3
C5 + C6 − 1

6
C7 − 1

2
C8

]

+Me

[
ξuC2 − ξt

(
−C3 − 3

2
C8 +

1
2
C9 +

3
2
C10

)]

+Meρ

[
ξuC2 − ξt

(
−C3 +

3
2
C8 +

1
2
C9 +

3
2
C10

)]
−(Ma +Maρ) [ξuC2

− ξt

(
C3 + 2C4 − 2C6 − 1

2
C8 − 1

2
C9 +

1
2
C10

)]

+(MP
e + 2MP

a )ξt

[
C5 − 1

2
C7

]
. (32)

The decay amplitude for B+ →ρ+π0 can be written as
√
2M(B+ → ρ+π0)

= (Fe + 2Fa)
[
ξu

(
1
3
C1 + C2

)

−ξt
(
1
3
C3 + C4 + C10 +

1
3
C9

)]

+Feρ

[
ξu

(
C1 +

1
3
C2

)

− ξt

(
−1
3
C3 − C4 − 3

2
C7 − 1

2
C8 + C10 +

5
3
C9

)]

−FP
eρξt

[
−1
3
C5 − C6 +

1
2
C8 +

1
6
C7

]

+Meρ

[
ξuC2 − ξt

(
−C3 +

3
2
C8 +

1
2
C9 +

3
2
C10

)]
+(Me +Ma −Maρ) [ξuC1 − ξt (C3 + C9)]

−MP
e ξt [C5 + C7]

−2FP
a ξt

[
1
3
C5 + C6 +

1
3
C7 + C8

]
. (33)

The decay amplitude for B+ →π+ρ0 can be written as

√
2M(B+ → π+ρ0) = Fe

[
ξu

(
C1 +

1
3
C2

)

−ξt
(

−1
3
C3 − C4 +

3
2
C7 +

1
2
C8 +

5
3
C9 + C10

)]

+(Feρ − 2Fa)
[
ξu

(
1
3
C1 + C2

)

− ξt

(
1
3
C3 + C4 +

1
3
C9 + C10

)]

−(FP
eρ − 2FP

a )ξt

[
1
3
C5 + C6 +

1
3
C7 + C8

]

+Me

[
ξuC2 − ξt

(
−C3 − 3

2
C8 +

1
2
C9 +

3
2
C10

)]
+(Meρ −Ma +Maρ) [ξuC1 − ξt(C3 + C9)]

+MP
e ξt

[
C5 − 1

2
C7

]
. (34)
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From (30)–(34), we can verify that the isospin relation

M(B0 → π+ρ−) +M(B0 → π−ρ+)− 2M(B0 → π0ρ0)

=
√
2M(B+ → π0ρ+) +

√
2M(B+ → π+ρ0) (35)

holds exactly in our calculations.
The decay amplitude for B+ → π+ω can also be writ-

ten as an expression of the above Fi and Mi, but one
should remember replacing fρ by fω and φρ by φω

√
2M(B+ → π+ω)

= Fe

[
ξu

(
C1 +

1
3
C2

)
− ξt

(
7
3
C3 +

5
3
C4 + 2C5 +

2
3
C6

+
1
2
C7 +

1
6
C8 +

1
3
C9 − 1

3
C10

)]

+ Feρ

[
ξu

(
1
3
C1 + C2

)
− ξt

(
1
3
C3 + C4 +

1
3
C9 + C10

)]

− FP
eρξt

[
1
3
C5 + C6 +

1
3
C7 + C8

]

+ Me

[
ξuC2 − ξt

(
C3 + 2C4 − 2C6 − 1

2
C8

− 1
2
C9 +

1
2
C10

)]
+ (Meρ +Ma +Maρ) [ξuC1 − ξt (C3 + C9)]

− (MP
a +MP

aρ)ξt [C5 + C7]−MP
e ξt

[
C5 − 1

2
C7

]
. (36)

The decay amplitude for B0 → π0ω can be written as

2M(B0 → π0ω) = Fe

[
ξu

(
−C1 − 1

3
C2

)

−ξt
(

−7
3
C3 − 5

3
C4 − 2C5 − 2

3
C6 − 1

2
C7 − 1

6
C8

−1
3
C9 +

1
3
C10

)]
+ Feρ

[
ξu

(
C1 +

1
3
C2

)

−ξt
(

−1
3
C3 − C4 − 3

2
C7 − 1

2
C8 +

5
3
C9 + C10

)]

+FP
eρξt

[
C6 +

1
3
C5 − 1

6
C7 − 1

2
C8

]

+Me

[
−ξuC2 − ξt

(
−C3 − 2C4 + 2C6 +

1
2
C8

+
1
2
C9 − 1

2
C10

)]

+Meρ

[
ξuC2 − ξt

(
−C3 +

3
2
C8 +

1
2
C9 +

3
2
C10

)]

+(Ma +Maρ)
[
ξuC2 − ξt

(
−C3 − 3

2
C8

+
1
2
C9 +

3
2
C10

)]

+(MP
e + 2MP

a )ξt

[
C5 − 1

2
C7

]
. (37)

4 Numerical calculations
and discussions of results

In the numerical calculations we use

Λ
(f=4)
MS

= 0.25GeV, fπ = 130MeV,

fB = 190MeV,
m0 = 1.4GeV, fρ = fω = 200MeV,

fTρ = fTω = 160MeV,

MB = 5.2792GeV, MW = 80.41GeV. (38)

Note that for simplicity we use the same value for fρ (fTρ )
and fω (fTω ). This also makes it easy for us to see the major
difference for the two mesons in B decays. In principle,
the decay constants can be a little different. For the light
meson wave function, we neglect the b dependent part,
which is not important in the numerical analysis. We use
the wave function for φAπ and the twist-3 wave functions
φPπ and φtπ from [16]:

φAπ (x) =
3√
6
fπx(1− x) (39)

×
[
1 + 0.44C3/2

2 (2x− 1) + 0.25C3/2
4 (2x− 1)

]
,

φPπ (x) =
fπ

2
√
6

(40)

×
[
1 + 0.43C1/2

2 (2x− 1) + 0.09C1/2
4 (2x− 1)

]
,

φtπ(x) =
fπ

2
√
6
(1− 2x)

[
1 + 0.55(10x2 − 10x+ 1)

]
. (41)

The Gegenbauer polynomials are defined by

C
1/2
2 (t) =

1
2
(3t2 − 1), C1/2

4 (t) =
1
8
(35t4 − 30t2 + 3),

C
3/2
2 (t) =

3
2
(5t2 − 1), C3/2

4 (t) =
15
8
(21t4 − 14t2 + 1),

(42)
whose coefficients correspond to m0 = 1.4GeV. In the
B → πρ, πω decays, it is the longitudinal polarization of
the ρ and ω-meson which contributes to the decay ampli-
tude. Therefore we choose the wave function of the ρ- and
ω-meson similar to the pion case in (39) and (41) [17]:

φρ(x) = φω(x)

=
3√
6
fρx(1− x)

[
1 + 0.18C3/2

2 (2x− 1)
]
, (43)

φtρ(x) = φtω(x)

=
fTρ

2
√
6

{
3(2x− 1)2 + 0.3(2x− 1)2

× [
5(2x− 1)2 − 3

]
+ 0.21[3− 30(2x− 1)2 + 35(2x− 1)4]

}
, (44)

φsρ(x) = φsω(x) (45)

=
3

2
√
6
fTρ (1− 2x)

[
1 + 0.76(10x2 − 10x+ 1)

]
.
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Here, again for simplicity, we use the same expression for
ρ- and ω-mesons.

For the B-meson, the wave function is chosen as

φB(x, b) =
NB

2
√
6
fBx

2(1− x)2

× exp
[
−M2

B x2

2ω2
b

− 1
2
(ωbb)2

]
, (46)

with ωb = 0.4GeV. NB = 2365.57 is a normalization fac-
tor. We include the full expression of the twist-3 wave
functions for the light mesons, unlike B → ππ decays [10].
The twist-3 wave functions are also adopted from QCD
sum rule calculations [16]. These changes make the B → ρ
form factor a little larger than the B → π form factor
[13]. However, this set of parameters does not change the
B0 → π+π− branching ratios. We will see later that this
set of parameters will give good results for B → πρ and
πω decays. With the wave functions chosen above we get
the corresponding form factors at zero momentum transfer
from (13) and (23):

FB→π
0 = 0.30, AB→ρ

0 = 0.37.

They are close to the light-cone QCD sum rule results
[18].

The CKM parameters we used here are [19]

|Vud| = 0.9735± 0.0008, |Vub/Vcb| = 0.090± 0.025,
|Vcb| = 0.0405± 0.0019, |V ∗

tbVtd| = 0.0083± 0.0016.
(47)

We leave the CKM angle φ2 as a free parameter. The
definition of φ2 is

φ2 = arg
[
− VtdV

∗
tb

VudV ∗
ub

]
. (48)

In this parameterization, the decay amplitude of B → πρ
(or πω) can be rewritten as

M = V ∗
ubVudT − V ∗

tbVtdP

= V ∗
ubVudT

[
1 + zei(φ2+δ)

]
, (49)

where z = |V ∗
tbVtd/V

∗
ubVud| |P/T |, and δ is the relative

strong phase between tree (T) diagrams and penguin di-
agrams (P). z and δ can be calculated from PQCD. The
corresponding charge conjugate decay mode is then

M = VubV
∗
udT − VtbV

∗
tdP

= VubV
∗
udT

[
1 + zei(−φ2+δ)

]
. (50)

Therefore the averaged branching ratio for B → πρ is

Br = (|M|2 + |M|2)/2
= |VubV ∗

udT |2 [
1 + 2z cosφ2 cos δ + z2] , (51)

where z = |VtbV ∗
td/VubV

∗
ud| |P/T |. Equation (51) shows

that the averaged branching ratio is a function of cosφ2.

Fig. 3. Branching ratios (10−6) of B0/B̄0 → π+ρ− (solid
line), B0/B̄0 → ρ+π− (dotted line), B+ → π+ρ0 (dashed line),
B+ → ρ+π0 (dash-dotted line), and B+ → π+ω (dash-dotted-
dotted line), as a function of CKM angle φ2

This gives a potential method to determine the CKM an-
gle φ2 by measuring only the averaged non-leptonic decay
branching ratios. In our PQCD approach, the branching
ratios and also the other quantities in (51) are all calcula-
ble, so that cosφ2 is measurable. However, there are still
uncertainties in the input parameters of our approach as
discussed below. More experimental data from BABAR
and Belle can restrict these parameters in the near future.

A more complicated thing to consider is that there are
four decay channels of B0/B̄0 → π+ρ−, B0/B̄0 → ρ+π−.
Due to BB̄ mixing, it is very difficult to distinguish B0

from B̄0. But it is very easy to identify the final states.
Therefore we sum up B0/B̄0 → π+ρ− as one channel,
and B0/B̄0 → ρ+π− as another, although the summed
up channels are not charge conjugate states. We show
the branching ratio of B0/B̄0 → π+ρ−, B0/B̄0 → ρ+π−,
B+ → π+ρ0, B+ → ρ+π0, and B+ → π+ω decays as a
function of φ2 in Fig. 3. The branching ratio of B0/B̄0 →
π+ρ− is a little larger than that of the B0/B̄0 → π−ρ+

decays. Each of them is a sum of two decay channels. They
all get larger when φ2 is larger. The average of the two is
in agreement with the recently measured branching ratios
by CLEO [1] and BABAR [20]:

Br(B0 → π+ρ− + π−ρ+) = 27.6+8.4
−7.4 ± 4.2× 10−6,

CLEO, (52)
Br(B0 → π+ρ− + π−ρ+) = 28.9±5.4± 4.3× 10−6,

BABAR. (53)

There are still large uncertainties in the experimental re-
sults. Therefore it is still too early to fully determine the
input parameters and to obtain the CKM angle φ2 from
experiments.

The most uncertain parameters in our approach con-
cern the meson wave functions. In principle, they can only
be restricted by experiments, namely, semi-leptonic and
non-leptonic decays of B-mesons. Our parameters chosen
for the numerical calculations in (38) and (46) are best fit
values from B → ππ decays [10], B → πK [14], B → π,
B → ρ semi-leptonic decays [13] and some other experi-
ments. As in these decays, we show the ωb dependence of
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Fig. 4. Branching ratios of B0/B̄0 → π±ρ∓ decays: ωb =
0.36 (dotted line), ωb = 0.40 (dashed line) and ωb = 0.44
(dash-dotted line) as a function of the CKM angle φ2. The two
horizontal lines are BABAR measurement limits

Fig. 5. Branching ratios of B0/B̄0 → π±ρ∓ decays: m0 =
1.3GeV (dotted line), m0 = 1.4GeV (dashed line) and m0 =
1.5GeV (dash-dotted line) as a function of the CKM angle φ2.
The two horizontal lines are BABAR measurement limits

the branching ratios Br(B0/B̄0 → π±ρ∓) in Fig. 4. The
dotted, dashed and dash-dotted lines are for ωb = 0.36,
0.40 and 0.44, respectively. They are also shown as a func-
tion of the CKM angle φ2. The two horizontal lines in the
figure are BABAR measurements of 1σ. From the figure,
we can see that the branching ratio is quite sensitive to
the ωb parameter. Fortunately, this parameter is also re-
stricted from semi-leptonic decays [13]. In the near future,
it will not be a big problem.

In Fig. 5 we show the branching ratio of B0/B̄0 →
π±ρ∓ decays: m0 = 1.3GeV (dotted line), m0 = 1.4GeV
(dashed line) and m0 = 1.5GeV (dash-dotted line) as a
function of the CKM angle φ2. m0 is a parameter char-
acterizing the relative size of the twist-3 contribution to
the twist-2 contribution. It originates from chiral pertur-
bation theory and has a value near 1GeV. Because of the
chiral enhancement of m0, the twist-3 contribution is at
the same order of magnitude as the twist-2 contribution.
Thus the branching ratios of Br(B0/B̄0 → π±ρ∓) are also
sensitive to this parameter, but not as strongly as the ωb
dependence.

The branching ratios of B+ → π+ρ0 and B+ → π+ω
have little dependence on φ2. They are a little smaller than

Fig. 6. Branching ratios (10−7) of B0 → π0ρ0 (solid line),
B0 → π0ω (dotted line), as a function of CKM angle φ2

the CLEO measurement [1] shown below, but still within
experimental error bars. We have

Br(B+ → π+ρ0) = 10.4+3.3
−3.4 ± 2.110−6, (54)

Br(B+ → π+ω) = 11.3+3.3
−2.9 ± 1.410−6. (55)

However, the recent BABAR measurement is in good
agreement with our prediction for B+ → π+ω [21]:

Br(B+ → π+ω) = 6.6+2.1
−1.8 ± 0.7× 10−6, (56)

where the error bars are also smaller. The preliminary re-
sult of Belle shows that the branching ratio of B+ → π+ρ0

is around 6×10−6 [22]. This agrees with our prediction in
Fig. 3.

The averaged branching ratios of B0 → π0ρ0 and π0ω
are shown in Fig. 6. They also have a large dependence
on φ2. Their behavior is quite different, due to the dif-
ferent isospin of ρ0 and ω. But their branching ratios are
rather small, around 10−7. They may not be measured in
the current running B factories, but this may be possible
in future experiments, like LHC-B and NLC. The recent
BABAR upper limit of the channel is [20]

Br(B0 → π0ρ0) < 10.6× 10−6. (57)

This is still consistent with our predictions in the standard
model (SM).

Using (49) and (50), we can derive the direct CP -
violating parameter to find

Adir
CP =

|M|2 − |M|2
|M|2 + |M|2

=
2 sinφ2 sin δ

1 + 2z cosφ2 cos δ + z2 . (58)

Unsurprisingly, it is a function of cosφ2 and sinφ2. It is
calculable in our PQCD approach. The direct CP -
violation parameters as a function of φ2 are shown in
Fig. 7. The direct CP -violation parameter of B+ → π+ρ0

and B0 → π0ρ0 are positive and very large, while the
direct CP -violation parameter of B+ → ρ+π0 and B0 →
π0ω are negative and very large. The large strong phase re-
quired by the large direct CP -asymmetry is from the non-
factorizable and annihilation type diagrams, especially the
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Fig. 7. Direct CP -violation parameters of B+ → π+ω (solid
line), B+ → π+ρ0 (dotted line), B+ → ρ+π0 (dashed line),
B0 → ρ0π0 (dash-dotted line), B0 → π0ω (dash-dotted-dotted
line), as a function of the CKM angle φ2

annihilation diagrams. This is different from the situation
in the factorization approach where the main contribution
comes from the BSS mechanism [23] and the annihilation
diagram has been neglected [24]. The direct CP -violation
of B+ → π+ω is rather small, since the annihilation dia-
gram contributions in this decay is almost canceled in (36).
The preliminary measurement of CLEO shows a large CP -
asymmetry for this decay [25]:

ACP (B+ → π+ω) = 34± 25%. (59)

Although the sign of this CP asymmetry is in agreement
with our prediction, the central value is too large. If the
result of the central value remains in future experiments,
we may expect new physics contributions.

For the neutral B0 decays, there is a more compli-
cation situation because of the B0B0 mixing. The CP -
asymmetry is time dependent [24]:

ACP (t) � Adir
CP cos(∆mt) + aε+ε′ sin(∆mt), (60)

where ∆m is the mass difference of the two mass eigen-
states of the neutral B-meson. The direct CP -violation
parameter Adir

CP has already been defined in (58), while
the mixing-related CP -violation parameter is defined by

aε+ε′ =
−2Im(λCP )
1 + |λCP |2 , (61)

where

λCP =
V ∗
tbVtd〈f |Heff |B0〉

VtbV ∗
td〈f |Heff |B0〉 . (62)

Using (49) and (50), we can derive

λCP = e2iφ2
1 + zei(δ−φ2)

1 + zei(δ+φ2)
. (63)

λCP and aε+ε′ are functions of the CKM angle φ2 only.
Therefore, the CP -asymmetry of B → πρ and πω decays
can measure the CKM angle φ2, even if for the neutral B
decays including the BB̄ mixing effect.

Fig. 8. Total CP -asymmetries of B0 → π0ρ0 (solid line), and
B0 → π0ω (dotted line), as a function of the CKM angle φ2

If we integrate over the time variable t, we will get the
total CP -asymmetry

ACP =
1

1 + x2A
dir
CP +

x

1 + x2 aε+ε′ , (64)

with x = ∆m/Γ � 0.723 for the B0B
0
mixing in the SM

[19]. The total CP -asymmetries of B0 → π0ρ0, π0ω are
shown in Fig. 8. Although the CP -asymmetries are large,
it is still difficult to measure them, since their branching
ratios are small, around 10−7.

The CP -asymmetries of B0/B̄0 →π±ρ∓ are very com-
plicated. Here one studies the four time-dependent decay
widths for B0(t) → π+ρ−, B̄0(t) → π−ρ+, B0(t) → π−ρ+

and B̄0(t) → π+ρ− [26–28]. These time-dependent widths
can be expressed by four basic matrix elements:

g = 〈π+ρ−|Heff |B0〉, h = 〈π+ρ−|Heff |B̄0〉,
ḡ = 〈π−ρ+|Heff |B̄0〉, h̄ = 〈π−ρ+|Heff |B0〉, (65)

which determine the decay matrix elements ofB0 → π+ρ−
and π−ρ+, and of B̄0 → π−ρ+ and π+ρ− at t = 0. The
matrix elements g and h̄ are given in (30) and (31). The
matrix elements h and ḡ are obtained from h̄ and g by
changing the signs of the weak phases contained in the
products of the CKM matrix elements. We also need to
know the CP -violating parameter coming from the B0B̄0

mixing. Defining

B1 = p|B0〉+ q|B̄0〉,
B2 = p|B0〉 − q|B̄0〉, (66)

with |p|2 + |q|2 = 1 and q/p = (H21/H12)1/2, with Hij =
Mij − i/2Γij representing the |∆B| = 2 and ∆Q = 0
Hamiltonian. For the decays of B0 and B̄0 we use

q

p
=

V ∗
tbVtd

VtbV ∗
td

= e−2iφ1 . (67)

So |q/p| = 1 and this ratio has only a phase given by
−2φ1. Then, the four time-dependent widths are given by
the following formulae (we follow the notation of [28]):

Γ (B0(t) → π+ρ−) = e−Γt 1
2
(|g|2 + |h|2)
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× {1 + aε′ cos∆mt+ aε+ε′ sin∆mt} ,
Γ (B̄0(t) → π−ρ+) = e−Γt 1

2
(|ḡ|2 + |h̄|2)

× {1− aε̄′ cos∆mt− aε+ε̄′ sin∆mt} ,
Γ (B0(t) → π−ρ+) = e−Γt 1

2
(|ḡ|2 + |h̄|2)

× {1 + aε̄′ cos∆mt+ aε+ε̄′ sin∆mt} ,
Γ (B̄0(t) → π+ρ−) = e−Γt 1

2
(|g|2 + |h|2)

× {1− aε′ cos∆mt− aε+ε′ sin∆mt} , (68)

where

aε′ =
|g|2 − |h|2
|g|2 + |h|2 , aε+ε′ =

−2Im
(
q

p

h

g

)
1 + |h/g|2 ,

aε̄′ =
|h̄|2 − |ḡ|2
|h̄|2 + |ḡ|2 , aε+ε̄′ =

−2Im
(
q

p

ḡ

h̄

)
1 + |ḡ/h̄|2 . (69)

We calculate the above four CP -violation parameters re-
lated to B0/B̄0 → π±ρ∓ decays in PQCD. The results are
shown in Fig. 9 as a function of φ2. Comparing the results
with the factorization approach [24], we found that our
predicted sizes of aε′ and aε̄′ are smaller while aε+ε′ and
aε+ε̄′ are larger. By measuring the time-dependent spec-
trum of the decay rates of B0 and B̄0, one can find the
coefficients of the two functions cos∆mt and sin∆mt in
(68) and extract the quantities aε′ , aε+ε′ , aε̄′ , and aε+ε̄′ .
Using these experimental results, we can obtain the size
of the CKM angle φ2 from Fig. 9.

5 Summary

We calculated the B0 → π+ρ−, B0 → ρ+π−, B+ → ρ+π0,
B+ → π+ρ0, B0 → π0ρ0, B+ → π+ω and B0 → π0ω de-
cays, together with their charge conjugate modes, in a per-
turbative QCD approach. We calculated the B → π and
B → ρ form factors, which are in agreement with the QCD
sum rule calculations. In addition to the usual factoriza-
tion contributions, we also calculated the non-factorizable
and annihilation diagrams. Although these are sub-leading
contributions in the branching ratios of these decays, they
are not negligible. Furthermore these diagrams provide
the necessary strong phases required by the direct CP -
asymmetry measurement.

Our calculation gives the right branching ratios, which
agrees well with the CLEO and BABAR measurements.
We also predict large direct CP -asymmetries in the B+ →
ρ+π0 and B+ → π+ρ0 decays. Including the BB̄ mixing
effect, the CP -asymmetries of B0 → π0ω and B0 → π0ρ0

are very large, but their branching ratios are small in the
SM. The CP -asymmetry parameters of the B0 → π+ρ−
and B0 → ρ+π− decays require the time-dependent mea-
surement of the branching ratios.
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Appendix

A Related functions defined in the text

We show here the functions hi, coming from the Fourier
transform of H(0),

he(x1, x2, b1, b2) = K0 (
√
x1x2mBb1)

×
[
θ(b1 − b2)K0 (

√
x2mBb1) I0 (

√
x2mBb2)

+θ(b2 − b1)K0 (
√
x2mBb2) I0 (

√
x2mBb1)

]
St(x2),

(70)
hd(x1, x2, x3, b1, b2) = αs(td)K0 (−i√x2x3mBb2)

×
[
θ(b1 − b2)K0 (

√
x1x2mBb1) I0 (

√
x1x2mBb2)

+θ(b2 − b1)K0 (
√
x1x2mBb2) I0 (

√
x1x2mBb1)

]
,

(71)
h1
f (x1, x2, x3, b1, b2) = K0 (−i√x2x3mBb1)αs(t1f )

×
[
θ(b1 − b2)K0 (−i√x2x3mBb1)J0 (

√
x2x3mBb2)

+θ(b2 − b1)K0 (−i√x2x3mBb2)J0 (
√
x2x3mBb1)

]
,

(72)
h2
f (x1, x2, x3, b1, b2)

= K0
(√

x2 + x3 − x2x3mBb1
)
αs(t2f )

×
[
θ(b1 − b2)K0 (−i√x2x3mBb1)J0 (

√
x2x3mBb2)

+θ(b2 − b1)K0 (−i√x2x3mBb2)J0 (
√
x2x3mBb1)

]
,

(73)
ha(x1, x2, b1, b2) = K0 (−i√x1x2mBb2)St(x1)

×
[
θ(b1 − b2)K0 (−i√x1mBb1)J0 (

√
x1mBb2)
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+θ(b2 − b1)K0 (−i√x1mBb2)J0 (
√
x1mBb1)

]
, (74)

where J0 is the Bessel function and K0, I0 are modified
Bessel functions with K0(−ix) = −(π/2)Y0(x) + i(π/2)
J0(x). The threshold resummation form factor St(xi) is
adopted from [13]:

St(x) =
21+2cΓ (3/2 + c)√

πΓ (1 + c)
[x(1− x)]c, (75)

where the parameter c = 0.3. This function is normalized
to unity.

The Sudakov factors used in the text are defined by

Sab(t) = s
(
x1mB/

√
2, b1

)
+ s

(
x2mB/

√
2, b2

)
+ s

(
(1− x2)mB/

√
2, b2

)
− 1

β1

[
ln

ln(t/Λ)
− ln(b1Λ)

+ ln
ln(t/Λ)

− ln(b2Λ)

]
, (76)

Scd(t) = s
(
x1mB/

√
2, b1

)
+ s

(
x2mB/

√
2, b2

)
+ s

(
(1− x2)mB/

√
2, b2

)
+ s

(
x3mB/

√
2, b1

)
+ s

(
(1− x3)mB/

√
2, b1

)
− 1

β1

[
2 ln

ln(t/Λ)
− ln(b1Λ)

+ ln
ln(t/Λ)

− ln(b2Λ)

]
, (77)

Sef (t) = s
(
x1mB/

√
2, b1

)
+ s

(
x2mB/

√
2, b2

)
+ s

(
(1− x2)mB/

√
2, b2

)
+ s

(
x3mB/

√
2, b2

)
+ s

(
(1− x3)mB/

√
2, b2

)
− 1

β1

[
ln

ln(t/Λ)
− ln(b1Λ)

+ 2 ln
ln(t/Λ)

− ln(b2Λ)

]
, (78)

Sgh(t) = s
(
x2mB/

√
2, b1

)
+ s

(
x3mB/

√
2, b2

)
+ s

(
(1− x2)mB/

√
2, b1

)
+ s

(
(1− x3)mB/

√
2, b2

)
− 1

β1

[
ln

ln(t/Λ)
− ln(b1Λ)

+ ln
ln(t/Λ)

− ln(b2Λ)

]
, (79)

where the functions s(q, b) are defined in AppendixA of
[10]. The scales ti in the above equations are chosen as

t1e = max(
√
x2mB , 1/b1, 1/b2), (80)

t2e = max(
√
x1mB , 1/b1, 1/b2), (81)

td = max(
√
x1x2mB ,

√
x2x3mB , 1/b1, 1/b2), (82)

t1f = max(
√
x2x3mB , 1/b1, 1/b2), (83)

t2f = max(
√
x2x3mB ,

√
x2 + x3 − x2x3mB , 1/b1, 1/b2).

(84)
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